If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+56x+252=0
a = 1; b = 56; c = +252;
Δ = b2-4ac
Δ = 562-4·1·252
Δ = 2128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2128}=\sqrt{16*133}=\sqrt{16}*\sqrt{133}=4\sqrt{133}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(56)-4\sqrt{133}}{2*1}=\frac{-56-4\sqrt{133}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(56)+4\sqrt{133}}{2*1}=\frac{-56+4\sqrt{133}}{2} $
| 3^(2x)-4*(3^x)+3=0 | | 4.4=8^x | | (X-15)=(2x-5) | | 11x=849.6 | | 6/x+x-5=0 | | (5v+8)(7v+8)=0 | | x*(5x-15)=0 | | 6m-4+4m=-2(-m+2) | | 6x+32=15x+40 | | 9y+52=4y+97 | | 7(1-2x)=5 | | 4x+14=1/2(6x-19) | | 3x=-18/11 | | (x+12)+(4x-1)=180 | | -9(w-1)=-4w=11 | | 6e-10=10=2e+10e | | x2+4x+32=0 | | 3=a5 | | 2(x+3)+3(2+x+3)=-4 | | .4x-5=6-3x | | 5x-11=2x- | | 451-d=237 | | (1/9)^x-2=3 | | -4=x+3/2 | | 7m+6=18+4 | | 11x/6=83 | | 26x=110 | | Y=-8/5x-4 | | 5x+23=76 | | 5n-23=24 | | 3(33.5+-2y)+2y=58.50 | | -7(x+4)=3x-2 |